

MECÂNICA QUÂNTICA II - ÁLGEBRA LINEAR

Sandro Dias Pinto Vitenti

Departamento de Física – CCE – UEL

1. Considere a operação de dilatação definida por:

$$D(\lambda)|x\rangle = N(\lambda)|xe^{\lambda}\rangle, \tag{1}$$

onde x é o vetor posição, $N(\lambda)$ é a normalização do novo estado e λ é um parâmetro real. Supondo que $D(\lambda)$ é um operador unitário (que preserva, por exemplo, $\langle x_1|x_2\rangle=\delta^3(x_1-x_2)$), calcule a norma $N(\lambda)$ ignorando qualquer fase constante.

2. Use o resultado da questão acima para mostrar que a ação do operador $D(\lambda)$ sobre uma função de onda $\psi(x)$ é:

$$D(\lambda)\psi(\mathbf{x}) = e^{-3\lambda/2}\psi(\mathbf{x}e^{-\lambda}). \tag{2}$$

- 3. Mostre explicitamente que se $\psi(x)$ é normalizada $e^{-3\lambda/2}\psi(xe^{-\lambda})$ também será.
- 4. Escrevendo o operador de dilatação em termos do gerador \hat{d} como

$$D(\lambda) = e^{-i\lambda \hat{d}/\hbar},\tag{3}$$

mostre que

$$\hat{d} = \frac{\hat{x} \cdot \hat{p} + \hat{p} \cdot \hat{x}}{2},\tag{4}$$

onde \hat{x} e \hat{p} são os operadores vetoriais posição e momento, respectivamente.

5. Calcule o comutador de \hat{d} com \hat{x} , \hat{p} e \hat{L} (sendo o último o operador vetorial contendo os geradores de rotação). Podemos dizer que o operador \hat{d} é escalar ou vetorial? Justifique a sua resposta.